Generalized Cauchy Determinants
نویسنده
چکیده
This paper classifies the sequences that satisfy a generalization of the Cauchy determinant formula. They are the generalized Fibonacci numbers, up to a scalar multiple. Following this, it is determined which of these sequences generate Hankel matrices of unit fractions with integer inverses. As a corollary we obtain another proof that the Filbert Matrix has an inverse with integer entries, complementing proofs using WZ theory and orthogonal polynomials.
منابع مشابه
Approximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in $C^*$-ternary algebras
In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...
متن کاملCauchy-Rassias Stability of linear Mappings in Banach Modules Associated with a Generalized Jensen Type Mapping
متن کامل
Bayesian Prediction Intervals under Bivariate Truncated Generalized Cauchy Distribution
Ateya and Madhagi (2011) introduced a multivariate form of truncated generalized Cauchy distribution (TGCD), which introduced by Ateya and Al-Hussaini (2007). The multivariate version of (TGCD) is denoted by (MVTGCD). Among the features of this form are that subvectors and conditional subvectors of random vectors, distributed according to this distribution, have the same form of distribution ...
متن کاملA Two-parameter Generalized Skew-Cauchy Distribution
In this paper, we discuss a new generalization of univariate skew-Cauchy distribution with two parameters, we denoted this by GSC(&lambda1, &lambda2), that it has more flexible than the skew-Cauchy distribution (denoted by SC(&lambda)), introduced by Behboodian et al. (2006). Furthermore, we establish some useful properties of this distribution and by two numerical example, show that GSC(&lambd...
متن کاملFixed point theory in generalized orthogonal metric space
In this paper, among the other things, we prove the existence and uniqueness theorem of fixed point for mappings on a generalized orthogonal metric space. As a consequence of this, we obtain the existence and uniqueness of fixed point of Cauchy problem for the first order differential equation.
متن کامل